Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Influence Patterns for Explaining Information Flow in BERT
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Influence Patterns for Explaining Information Flow in BERT
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Influence Patterns for Explaining Information Flow in BERT

            Dez 6, 2021

            Sprecher:innen

            CL

            Caleb Lu

            Sprecher:in · 0 Follower:innen

            ZW

            Zifan Wang

            Sprecher:in · 0 Follower:innen

            PM

            Piotr Mardziel

            Sprecher:in · 0 Follower:innen

            Über

            While attention is all you need may be proving true, we do not know why: attention-based transformer models such as BERT are superior but how information flows from input tokens to output predictions are unclear. We introduce influence patterns, abstractions of sets of paths through a transformer model. Patterns quantify and localize the flow of information to paths passing through a sequence of model nodes. Experimentally, we find that significant portion of information flow in BERT goes throug…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            To Beam Or Not To Beam: That is a Question of Cooperation for Language GANs
            09:26

            To Beam Or Not To Beam: That is a Question of Cooperation for Language GANs

            Thomas Scialom, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards RL applications in video games and with human users
            26:41

            Towards RL applications in video games and with human users

            Katja Hofmann

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Q&A for Lightning Talks - Data Quality and Iteration
            17:43

            Q&A for Lightning Talks - Data Quality and Iteration

            Cody Coleman, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning Speeding Up the Development of Portfolio of New Crop Varieties to Adapt to and Mitigate Climate Change
            08:20

            Machine Learning Speeding Up the Development of Portfolio of New Crop Varieties to Adapt to and Mitigate Climate Change

            Abdallah Bari

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Frequency Bias of Generative Models
            11:09

            On the Frequency Bias of Generative Models

            Katja Schwarz, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Privately Learning Subspaces
            12:23

            Privately Learning Subspaces

            Vikrant Singhal, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen