Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Reinforcement Learning Enhanced Explainer for Graph Neural Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Reinforcement Learning Enhanced Explainer for Graph Neural Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Reinforcement Learning Enhanced Explainer for Graph Neural Networks

            Dez 6, 2021

            Sprecher:innen

            CS

            Caihua Shan

            Řečník · 0 sledujících

            YS

            Yifei Shen

            Řečník · 0 sledujících

            YZ

            Yao Zhang

            Řečník · 0 sledujících

            Über

            Graph neural networks (GNNs) have recently emerged as revolutionary technologies for machine learning tasks on graphs. In GNNs, the graph structure is generally incorporated with node representation via the message passing scheme, making the explanation much more challenging. Given a trained GNN model, a GNN explainer aims to identify a most influential subgraph to interpret the prediction of an instance (e.g., a node or a graph), which is essentially a combinatorial optimization problem over gr…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            A Faster Maximum Cardinality Matching Algorithm with Applications in Machine Learning
            14:49

            A Faster Maximum Cardinality Matching Algorithm with Applications in Machine Learning

            Nathaniel Lahn, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality
            14:11

            Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality

            Stefanos Leonardos, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Deep Contextual Video Compression
            06:33

            Deep Contextual Video Compression

            Jiahao Li, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Stakeholder Participation in AI:
            04:35

            Stakeholder Participation in AI:

            Fernando Delgado, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Boosting subgroup performance without group annotations
            05:09

            Boosting subgroup performance without group annotations

            Vincent Bardenhagen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Active site sequence representation of human kinases outperforms full sequence for affinity prediction
            02:10

            Active site sequence representation of human kinases outperforms full sequence for affinity prediction

            Jannis Born, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen