Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Fast Certified Robust Training with Short Warmup
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Fast Certified Robust Training with Short Warmup
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Fast Certified Robust Training with Short Warmup

            Dez 6, 2021

            Sprecher:innen

            ZS

            Zhouxing Shi

            Sprecher:in · 0 Follower:innen

            YW

            Yihan Wang

            Sprecher:in · 0 Follower:innen

            HZ

            Huan Zhang

            Sprecher:in · 0 Follower:innen

            Über

            Recently, bound propagation based certified robust training methods have been proposed for training neural networks with certifiable robustness guarantees. Despite that state-of-the-art (SOTA) methods including interval bound propagation (IBP) and CROWN-IBP have per-batch training complexity similar to standard neural network training, they usually use a long warmup schedule with hundreds or thousands epochs to reach SOTA performance and are thus still costly. In this paper, we identify two impo…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            On the Generative Utility of Cyclic Conditionals
            16:03

            On the Generative Utility of Cyclic Conditionals

            Chang Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Refined Learning Bounds for Kernel and Approximate k-Means
            09:17

            Refined Learning Bounds for Kernel and Approximate k-Means

            Young Liu

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Quantitative Epistemology - Empowering Human Meta-learning using Machine Learning
            36:55

            Quantitative Epistemology - Empowering Human Meta-learning using Machine Learning

            Mihaela van der Schaar

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            An Extensible Benchmark Suite for Learning to Simulate Physical Systems
            05:03

            An Extensible Benchmark Suite for Learning to Simulate Physical Systems

            Karl Otness, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Using Dense Object Descriptors for Picking Cluttered General Objects with Reinforcement Learning
            03:10

            Using Dense Object Descriptors for Picking Cluttered General Objects with Reinforcement Learning

            Hoang-Giang Cao, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Stakeholder Participation in AI:
            04:35

            Stakeholder Participation in AI:

            Fernando Delgado, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen