Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: VAST: Value Function Factorization with Variable Agent Sub-Teams
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            VAST: Value Function Factorization with Variable Agent Sub-Teams
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            VAST: Value Function Factorization with Variable Agent Sub-Teams

            Dez 6, 2021

            Sprecher:innen

            TP

            Thomy Phan

            Sprecher:in · 0 Follower:innen

            FR

            Fabian Ritz

            Sprecher:in · 0 Follower:innen

            LB

            Lenz Belzner

            Sprecher:in · 0 Follower:innen

            Über

            Value function factorization (VFF) is a popular approach to cooperative multi-agent reinforcement learning in order to learn local value functions from global rewards. However, state-of-the-art VFF is limited to a handful of agents in most domains. We hypothesize that this is due to the flat factorization scheme, where the VFF operator becomes a performance bottleneck with an increasing number of agents. Therefore, we propose VFF with variable agent sub-teams (VAST). VAST approximates a factoriz…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Considering Data, Evaluation and Diversity to Understand Information Disorders in Social Media
            31:26

            Considering Data, Evaluation and Diversity to Understand Information Disorders in Social Media

            Barbara Poblete

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DiagnosisQA: A semi-automated pipeline for developing clinician validated diagnosis specific QA datasets.
            02:00

            DiagnosisQA: A semi-automated pipeline for developing clinician validated diagnosis specific QA datasets.

            Raghav Awasthi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization
            15:05

            Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization

            Bing-Jing Hsieh, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Consequences of Massive Scaling in Machine Learning
            1:01:25

            The Consequences of Massive Scaling in Machine Learning

            Noah D. Goodman, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Coresets for Classification – Simplified and Strengthened
            04:11

            Coresets for Classification – Simplified and Strengthened

            Tung Mai, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening remarks - Meaning in Context: Pragmatic Communication in Humans and Machines
            04:36

            Opening remarks - Meaning in Context: Pragmatic Communication in Humans and Machines

            Jennifer Hu

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen