Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond

            Dez 6, 2021

            Sprecher:innen

            NB

            Nina Balcan

            Sprecher:in · 0 Follower:innen

            SP

            Siddharth Prasad

            Sprecher:in · 0 Follower:innen

            TS

            Tuomas Sandholm

            Sprecher:in · 1 Follower:in

            Über

            Cutting-plane methods have enabled remarkable successes in integer program solving over the last few decades. All state-of-the-art modern-day solvers integrate a myriad of cutting-plane techniques to speed up the underlying branch-and-bound tree-search algorithm used to find optimal solutions. In this paper we prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution at hand using samples. We first bound the sample complexity of learning…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            How Copyright Shapes Your Datasets (and What To Do About It)
            53:02

            How Copyright Shapes Your Datasets (and What To Do About It)

            Amanda Levendowski

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            EventNarrative: A large-scale Event-centric Dataset for Knowledge Graph-to-Text Generation
            04:54

            EventNarrative: A large-scale Event-centric Dataset for Knowledge Graph-to-Text Generation

            Anthony Colas, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning for Snow Stratigraphy Classification
            05:01

            Machine Learning for Snow Stratigraphy Classification

            Julia Kaltenborn, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Shared Independent Component Analysis for Multi-Subject Neuroimaging
            14:21

            Shared Independent Component Analysis for Multi-Subject Neuroimaging

            Hugo Richard, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            WHY-21: Causal Inference & Machine Learning: Why now?
            06:03

            WHY-21: Causal Inference & Machine Learning: Why now?

            Elias Bareinboim, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion 1
            31:05

            Panel Discussion 1

            Francesca Parise, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen