Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: ParK: Sound and Efficient Kernel Ridge Regression by Feature Space Partitions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            ParK: Sound and Efficient Kernel Ridge Regression by Feature Space Partitions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            ParK: Sound and Efficient Kernel Ridge Regression by Feature Space Partitions

            Dez 6, 2021

            Sprecher:innen

            LC

            Luigi Carratino

            Řečník · 0 sledujících

            SV

            Stefano Vigogna

            Řečník · 0 sledujících

            DC

            Daniele Calandriello

            Řečník · 0 sledujících

            Über

            We introduce ParK, a new large-scale solver for kernel ridge regression. Our approach combines partitioning with random projections and iterative optimization to reduce space and time complexity while provably maintaining the same statistical accuracy. In particular, constructing suitable partitions directly in the feature space rather than in the input space, we promote orthogonality between the local estimators, thus ensuring that key quantities such as local effective dimension and bias remai…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Non-approximate Inference for Collective Graphical Models on Path Graphs via Discrete Difference of Convex Algorithm
            11:13

            Non-approximate Inference for Collective Graphical Models on Path Graphs via Discrete Difference of Convex Algorithm

            Yasunori Akagi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Sequential Algorithms for Testing Closeness of Distributions
            14:09

            Sequential Algorithms for Testing Closeness of Distributions

            Omar Fawzi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Curriculum Disentangled Recommendation with Noisy Multi-feedback
            06:03

            Curriculum Disentangled Recommendation with Noisy Multi-feedback

            Hon Chen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Continual Learning in Large-Scale Pre-training
            41:49

            Continual Learning in Large-Scale Pre-training

            Xu Sun

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            (Almost) Free Incentivized Exploration from Decentralized Learning Agents
            14:00

            (Almost) Free Incentivized Exploration from Decentralized Learning Agents

            Chengshuai Shi, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            STEP: Segmenting and Tracking Every Pixel
            05:16

            STEP: Segmenting and Tracking Every Pixel

            Mark Weber, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen