A Central Limit Theorem for Differentially Private Query Answering

Dec 6, 2021

Speakers

About

Perhaps the single most important use case for differential privacy is to privately answer numerical queries, which is usually achieved by adding noise to the answer vector. The central question is, therefore, to understand which noise distribution optimizes the privacy-accuracy trade-off, especially when the dimension of the answer vector is high. Accordingly, an extensive literature has been dedicated to the question and the upper and lower bounds have been successfully matched up to constant factors (Bun et al.,2018; Steinke Ullman, 2017). In this paper, we take a novel approach to address this important optimality question. We first demonstrate an intriguing central limit theorem phenomenon in the high-dimensional regime. More precisely, we prove that a mechanism is approximately Gaussian Differentially Private (Dong et al., 2021) if the added noise satisfies certain conditions. In particular, densities proportional to e^-x_p^α, where x_p is the standard ℓ_p-norm, satisfies the conditions. Taking this perspective, we make use of the Cramer–Rao inequality and show an "uncertainty principle"-style result: the product of privacy parameter and the ℓ_2-loss of the mechanism is lower bounded by the dimension. Furthermore, the Gaussian mechanism achieves the constant-sharp optimal privacy-accuracy trade-off among all such noises. Our findings are corroborated by numerical experiments.

Organizer

About NeurIPS 2021

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2021