Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning

            Dez 6, 2021

            Sprecher:innen

            GT

            Gugan Thoppe

            Řečník · 0 sledujících

            BK

            Bhumesh Kumar

            Řečník · 0 sledujících

            Über

            In Multi-Agent Reinforcement Learning (MARL), multiple agents interact with a common environment and with each other, for solving a shared problem in sequential decision-making. Algorithms for MARL have a wealth of application in popular domains including gaming, robotics, and finance. In this work, we study a family of distributed nonlinear stochastic approximation schemes useful in MARL and derive a novel law of iterated logarithm. In particular, our result describes the convergence rate on al…

            Organisator

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics
            15:03

            A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics

            Kai Xu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            WiSoSuper: Benchmarking Super-Resolution of Wind and Solar Data
            04:49

            WiSoSuper: Benchmarking Super-Resolution of Wind and Solar Data

            Rupa Kurinchi-Vendhan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            How Does Contrastive Pre-training Connect Disparate Domains?
            05:12

            How Does Contrastive Pre-training Connect Disparate Domains?

            Kendrick Shen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            SoK: Efficient Privacy-preserving Clustering (Extended Abstract)
            13:48

            SoK: Efficient Privacy-preserving Clustering (Extended Abstract)

            Aditya Hegde, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Causal Navigation by Continuous-time Neural Networks
            14:58

            Causal Navigation by Continuous-time Neural Networks

            Charles Vorbach, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            A Retrospective of robust RL
            27:55

            A Retrospective of robust RL

            Shie Mannor

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen