Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization

            Dez 6, 2021

            Sprecher:innen

            KYL

            Kfir Y. Levy

            Sprecher:in · 0 Follower:innen

            AK

            Ali Kavis

            Sprecher:in · 0 Follower:innen

            VC

            Volkan Cevher

            Sprecher:in · 0 Follower:innen

            Über

            In this work we investigate stochastic non-convex optimization problems where the objective is an expectation over smooth loss functions, and the goal is to find an approximate stationary point. The most popular approach to handling such problems is variance reduction techniques, which are also known to obtain tight convergence rates, matching the lower bounds in this case. Nevertheless, these techniques require a careful maintenance of anchor points in conjunction with appropriately selected “…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            ToAlign: Task-Oriented Alignment for Unsupervised Domain Adaptation
            05:41

            ToAlign: Task-Oriented Alignment for Unsupervised Domain Adaptation

            Guoqiang Wei, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AI workloads inside databases
            1:17:20

            AI workloads inside databases

            Guy Van den Broeck, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            2nd Workshop on Self-Supervised Learning: Theory and Practice
            9:05:06

            2nd Workshop on Self-Supervised Learning: Theory and Practice

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fast Axiomatic Attribution for Neural Networks
            14:49

            Fast Axiomatic Attribution for Neural Networks

            Robin Hesse, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Confident Anchor-Induced Multi-Source Free Domain Adaptation
            04:37

            Confident Anchor-Induced Multi-Source Free Domain Adaptation

            Jiahua Dong

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning for Healthcare
            20:05

            Machine Learning for Healthcare

            Sven Wellmann

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen