Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Latent Equilibrium: Arbitrarily fast computation with arbitrarily slow neurons
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Latent Equilibrium: Arbitrarily fast computation with arbitrarily slow neurons
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Latent Equilibrium: Arbitrarily fast computation with arbitrarily slow neurons

            Dez 6, 2021

            Sprecher:innen

            PH

            Paul Haider

            Sprecher:in · 0 Follower:innen

            BE

            Benjamin Ellenberger

            Sprecher:in · 0 Follower:innen

            LK

            Laura Kriener

            Sprecher:in · 0 Follower:innen

            Über

            The response time of physical computational elements is finite, and neurons are no exception. In hierarchical models of cortical networks each layer thus introduces a response lag. This inherent property of physical dynamical systems results in delayed processing of stimuli and causes a timing mismatch between network output and instructive signals, thus afflicting not only inference, but also learning. We introduce Latent Equilibrium, a new framework for inference and learning in networks of sl…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Theorem-Aware Geometry Problem Solving with Symbolic Reasoning and Theorem Prediction
            04:45

            Theorem-Aware Geometry Problem Solving with Symbolic Reasoning and Theorem Prediction

            Pan Lu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Active site sequence representation of human kinases outperforms full sequence for affinity prediction
            02:10

            Active site sequence representation of human kinases outperforms full sequence for affinity prediction

            Jannis Born, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The CPD Data Set: Personnel, Use of Force, and Complaints in the Chicago Police Department
            05:29

            The CPD Data Set: Personnel, Use of Force, and Complaints in the Chicago Police Department

            Thibaut Horel, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Compositional Tasks with Language Instructions
            05:12

            Learning Compositional Tasks with Language Instructions

            Lajanugen Logeswaran, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay
            12:37

            On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay

            Ekaterina Lobacheva, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Training for the Future: A Simple Gradient Interpolation Loss to Generalize Along Time
            14:10

            Training for the Future: A Simple Gradient Interpolation Loss to Generalize Along Time

            Anshul Nasery, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen