An Aligned Subgraph Kernel Based on Discrete-Time Quantum Walk

Nov 17, 2021

Speakers

About

In this paper, a novel graph kernel is designed by aligning the amplitude representation of the vertices. Firstly, the amplitude representation of a vertex is calculated based on the discrete-time quantum walk. Then a matching-based graph kernel is constructed through identifying the correspondence between the vertices of two graphs. The newly proposed kernel can be regarded as a kind of aligned subgraph kernel that incorporates the explicit local information of substructures. Thus, it can address the disadvantage arising in the classical R-convolution kernel that the relative locations of substructures between the graphs are ignored. Experiments on several standard datasets demonstrate that the proposed kernel has better performance compared with other state-of-the-art graph kernels in terms of classification accuracy.

Organizer

About ACML 2021

The 13th Asian Conference on Machine Learning ACML 2021 aims to provide a leading international forum for researchers in machine learning and related fields to share their new ideas, progress and achievements.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ACML 2021