Bayesian Latent Factor Model for Higher-order Data

Nov 17, 2021

Speakers

About

Latent factor models are canonical tools to learn low-dimensional and linear embedding of original data. Traditional latent factor models are based on low-rank matrix factorization of covariance matrices. However, for higher-order data with multiple modes, i.e., tensors, this simple treatment fails to take into account the mode-specific relations. This ignorance leads to inefficiency in analysis of complex structures as well as poor data compression ability. In this paper, unlike covariance matrices, we investigate high-order covariance tensor directly by exploiting tensor ring (TR) format and propose the Bayesian TR latent factor model, which can represent complex multi-linear correlations and achieves efficient data compression. To overcome the difficulty of finding the optimal TR-ranks and simultaneously imposing sparsity on loading coefficients, a multiplicative Gamma process (MGP) prior is adopted to automatically infer the ranks and obtain sparsity. Then, we establish efficient parameter-expanded EM algorithm to learn the maximum a posteriori (MAP) estimate of model parameters. Finally, we evaluate our model on covariance estimation, latent factor learning and image inpainting problems.

Organizer

About ACML 2021

The 13th Asian Conference on Machine Learning ACML 2021 aims to provide a leading international forum for researchers in machine learning and related fields to share their new ideas, progress and achievements.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ACML 2021