Sobolev Transport: A Scalable Metric for Probability Measures with Graph Metrics

Mar 28, 2022



Optimal transport (OT) is a popular measure to compare probability distributions. However, OT suffers a few drawbacks such as (i) a high complexity for computation, (ii) indefiniteness which limits its applicability to kernel machines. In this work, we consider probability measures supported on a graph metric space and propose a novel Sobolev transport metric. We show that the Sobolev transport metric yields a closed-form formula for fast computation and it is negative definite. We show that the space of probability measures endowed with this transport distance is isometric to a bounded convex set in a Euclidean space with a weighted ℓ_p distance. We further exploit the negative definiteness of the Sobolev transport to design positive-definite kernels, and evaluate their performances against other baselines in document classification with word embeddings and in topological data analysis.


About AISTATS 2022

AISTATS is an interdisciplinary gathering of researchers at the intersection of computer science, artificial intelligence, machine learning, statistics, and related areas. Since its inception in 1985, the primary goal of AISTATS has been to broaden research in these fields by promoting the exchange of ideas among them. We encourage the submission of all papers which are in keeping with this objective at AISTATS.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow AISTATS 2022