Mar 28, 2022

The knowledge that data lies close to a particular submanifold of the ambient Euclidean space may be useful in a number of ways. For instance, one may want to automatically mark any point far away from the submanifold as an outlier or to use the geometry to come up with a better distance metric. Manifold learning problems are often posed in a very high dimension, e.g. for spaces of images or spaces of words. Today, with deep representation learning on the rise in areas such as computer vision and natural language processing, many problems of this kind may be transformed into problems of moderately high dimension, typically of the order of hundreds. Motivated by this, we propose a manifold learning technique suitable for moderately high dimension and large datasets. The manifold is learned from the training data in the form of an intersection of quadric hypersurfaces—simple but expressive objects. At test time, this manifold can be used to introduce a computationally efficient outlier score for arbitrary new data points and to improve a given similarity metric by incorporating the learned geometric structure into it.

AISTATS is an interdisciplinary gathering of researchers at the intersection of computer science, artificial intelligence, machine learning, statistics, and related areas. Since its inception in 1985, the primary goal of AISTATS has been to broaden research in these fields by promoting the exchange of ideas among them. We encourage the submission of all papers which are in keeping with this objective at AISTATS.

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Presentations on similar topic, category or speaker