Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Lattice-Based Methods Surpass Sum-of-Squares in Clustering
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Lattice-Based Methods Surpass Sum-of-Squares in Clustering
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Lattice-Based Methods Surpass Sum-of-Squares in Clustering

            Jul 2, 2022

            Sprecher:innen

            MJS

            Min Jae Song

            Sprecher:in · 0 Follower:innen

            IZ

            Ilias Zadik

            Sprecher:in · 0 Follower:innen

            AW

            Alex Wein

            Sprecher:in · 0 Follower:innen

            Über

            Clustering is a fundamental primitive in unsupervised learning which gives rise to a rich class of computationally-challenging inference tasks. In this work, we focus on the canonical task of clustering d-dimensional Gaussian mixtures with unknown (and possibly degenerate) covariance. Recent works (Ghosh et al. '20; Mao, Wein '21; Davis, Diaz, Wang '21) have established lower bounds against the class of low-degree polynomial methods and the sum-of-squares (SoS) hierarchy for recovering certain h…

            Organisator

            C
            C

            COLT

            Konto · 20 Follower:innen

            Über COLT

            The conference is held annually since 1988 and has become the leading conference on Learning theory by maintaining a highly selective process for submissions. It is committed in high-quality articles in all theoretical aspects of machine learning and related topics.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Tight Lower Bounds for Combinatorial Multi-Armed Bandits
            01:02

            Tight Lower Bounds for Combinatorial Multi-Armed Bandits

            Shie Mannor, …

            C
            C
            COLT 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Tight Query Complexity Bounds for Learning Graph Partitions
            19:02

            Tight Query Complexity Bounds for Learning Graph Partitions

            Xizhi Liu, …

            C
            C
            COLT 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Extrapolating the profile of a finite population
            14:25

            Extrapolating the profile of a finite population

            Soham Jana, …

            C
            C
            COLT 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rate-Distortion Theoretic Generalization Bounds for Stochastic Learning Algorithms
            19:47

            Rate-Distortion Theoretic Generalization Bounds for Stochastic Learning Algorithms

            Milad Sefidgaran, …

            C
            C
            COLT 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Dimension-Free Bounds for Convex Function Chasing
            00:55

            Dimension-Free Bounds for Convex Function Chasing

            Anupam Gupta, …

            C
            C
            COLT 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Smooth Contextual Bandits: Bridging the Parametric and Non-differentiable Regret Regimes
            14:34

            Smooth Contextual Bandits: Bridging the Parametric and Non-differentiable Regret Regimes

            Nathan Kallus, …

            C
            C
            COLT 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? COLT folgen