Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: LINNA: Likelihood Inference Neural Network Accelerator
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            LINNA: Likelihood Inference Neural Network Accelerator
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            LINNA: Likelihood Inference Neural Network Accelerator

            Jul 22, 2022

            Sprecher:innen

            CT

            Chun-Hao To

            Sprecher:in · 0 Follower:innen

            EK

            Elisabeth Krause

            Sprecher:in · 0 Follower:innen

            ER

            Eduardo Rozo

            Sprecher:in · 0 Follower:innen

            Organisator

            I2
            I2

            ICML 2022

            Konto · 493 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Provably Feedback-Efficient Reinforcement Learning via Active Reward Learning
            05:16

            Provably Feedback-Efficient Reinforcement Learning via Active Reward Learning

            Dingwen Kong, …

            I2
            I2
            ICML 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path
            05:24

            Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path

            Haoyuan Cai, …

            I2
            I2
            ICML 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning
            05:31

            FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning

            Anis Elgabli, …

            I2
            I2
            ICML 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces
            17:18

            Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

            Yinglun Zhu, …

            I2
            I2
            ICML 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Study on the Predictability of Sample Learning Consistency
            09:30

            A Study on the Predictability of Sample Learning Consistency

            Alain Raymond-Sáez, …

            I2
            I2
            ICML 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Paper 9: BiPOCO: Bi-directional Trajectory Prediction with Pose Constraints for Pedestrian Anomaly Detection
            05:14

            Paper 9: BiPOCO: Bi-directional Trajectory Prediction with Pose Constraints for Pedestrian Anomaly Detection

            Asiegbu Miracle Kanu-Asiegbu, …

            I2
            I2
            ICML 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2022 folgen