Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Spherical Channels for Modeling Atomic Interactions
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Spherical Channels for Modeling Atomic Interactions
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Spherical Channels for Modeling Atomic Interactions

            Nov 28, 2022

            Sprecher:innen

            LZ

            Lawrence Zitnick

            Sprecher:in · 0 Follower:innen

            AD

            Abhishek Das

            Sprecher:in · 0 Follower:innen

            AK

            Adeesh Kolluru

            Sprecher:in · 0 Follower:innen

            Über

            Modeling the energy and forces of atomic systems is a fundamental problem in computational chemistry with the potential to help address many of the world's most pressing problems, including those related to energy scarcity and climate change. These calculations are traditionally performed using Density Functional Theory, which is computationally very expensive. Machine learning has the potential to dramatically improve the efficiency of these calculations from days or hours to seconds. We propos…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 960 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Branch & Learn for Recursively and Iteratively Solvable Problems in Predict+Optimize
            04:51

            Branch & Learn for Recursively and Iteratively Solvable Problems in Predict+Optimize

            Xinyi Hu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Explainable Multi-Agent Recommendation System for Energy-Efficient Decision Support in Smart Homes
            05:09

            Explainable Multi-Agent Recommendation System for Energy-Efficient Decision Support in Smart Homes

            Alona Zharova, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning neural causal models
            21:26

            Learning neural causal models

            Rosemary Ke

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Self-Supervised Image Restoration with Blurry and Noisy Pairs
            04:31

            Self-Supervised Image Restoration with Blurry and Noisy Pairs

            Zhilu Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Domain Generalization for Robust Model-Based Offline Reinforcement Learning
            07:58

            Domain Generalization for Robust Model-Based Offline Reinforcement Learning

            Alan Clark, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets
            04:57

            METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets

            Peilin Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen