Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Analyzing Data-Centric Properties for Contrastive Learning on Graphs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Analyzing Data-Centric Properties for Contrastive Learning on Graphs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Analyzing Data-Centric Properties for Contrastive Learning on Graphs

            Okt 28, 2022

            Sprecher:innen

            PT

            Puja Trivedi

            Sprecher:in · 0 Follower:innen

            ESL

            Ekdeep S Lubana

            Sprecher:in · 0 Follower:innen

            MH

            Mark Heimann

            Sprecher:in · 0 Follower:innen

            Über

            Recent analyses of self-supervised representation learning (SSL) find the following data-centric properties to be critical for learning high-quality representations: invariance to task-irrelevant semantics, separability of classes in some latent space, and recoverability of labels from augmented samples. However, given their discrete, non-Euclidean nature, graph datasets and graph SSL methods are unlikely to satisfy these properties. This raises the question: how do graph SSL methods, and in par…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification
            05:03

            UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification

            Yanbo Xu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Surprise Minimizing Multi-Agent Learning with Energy-Based Models
            04:42

            Surprise Minimizing Multi-Agent Learning with Energy-Based Models

            Karush Suri, …

            N2
            N2
            NeurIPS 2022 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interventions, Where and How? Experimental Design for Causal Models at Scale
            04:42

            Interventions, Where and How? Experimental Design for Causal Models at Scale

            Panagiotis Tigas, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Surrogate Modeling for Methane Dispersion Simulations Using Fourier Neural Operator
            05:03

            Surrogate Modeling for Methane Dispersion Simulations Using Fourier Neural Operator

            Qie Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Keynote 3: Independent Community Rooted AI Research
            19:03

            Keynote 3: Independent Community Rooted AI Research

            Timnit Gebru

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Production-grade Generative Modeling for Singing Voice Synthesis
            26:41

            On Production-grade Generative Modeling for Singing Voice Synthesis

            Kanru Hua

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen