Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Multi-Lingual Acquisition on Multimodal Pre-training for Cross-modal Retrieval
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Multi-Lingual Acquisition on Multimodal Pre-training for Cross-modal Retrieval
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Multi-Lingual Acquisition on Multimodal Pre-training for Cross-modal Retrieval

            Nov 28, 2022

            Sprecher:innen

            LZ

            Liang Zhang

            Řečník · 0 sledujících

            AH

            Anwen Hu

            Řečník · 0 sledujících

            QJ

            Qin Jin

            Řečník · 0 sledujících

            Über

            Vision and diverse languages are important information sources in our living world. A model that understands multi-modalities and multi-languages can be applied to a wider range of real-life scenarios. To build such a multimodal and multilingual model, existing works try to ensemble vision-language data from multiple languages in pre-training. However, due to the large number of languages, these works often require huge computing resources and cannot be flexibly extended to new languages. In thi…

            Organisator

            N2
            N2

            NeurIPS 2022

            Účet · 961 sledujících

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Matching in Multi-arm Bandit with Collision
            04:06

            Matching in Multi-arm Bandit with Collision

            Yirui Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
            04:48

            Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation

            Jinlong Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Generalization Bounds for Gradient Methods via Discrete and Continuous Prior
            04:51

            Generalization Bounds for Gradient Methods via Discrete and Continuous Prior

            Xuanyuan Luo, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Approaching Quartic Convergence Rates for Quasi-Stochastic Approximation with Application to Gradient-Free Optimization
            01:03

            Approaching Quartic Convergence Rates for Quasi-Stochastic Approximation with Application to Gradient-Free Optimization

            Caio Kalil Lauand, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Multi-Fidelity Experimental Design for Ice-Sheet  Models
            11:18

            Multi-Fidelity Experimental Design for Ice-Sheet Models

            Pierre Thodoroff

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation
            04:29

            LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation

            Geon-Hyeong Kim, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen