Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Truncated proposals for scalable and hassle-free simulation-based inference
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Truncated proposals for scalable and hassle-free simulation-based inference
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Truncated proposals for scalable and hassle-free simulation-based inference

            Nov 28, 2022

            Sprecher:innen

            MD

            Michael Deistler

            Sprecher:in · 0 Follower:innen

            PJG

            Pedro J. Goncalves

            Sprecher:in · 0 Follower:innen

            JHM

            Jakob H. Macke

            Sprecher:in · 0 Follower:innen

            Über

            Simulation-based inference (SBI) solves statistical inverse problems by repeatedly running a stochastic simulator and inferring posterior distributions from model-simulations. To improve simulation efficiency, several inference methods take a sequential approach and iteratively adapt the proposal distributions from which model simulations are generated. However, many of these sequential methods are difficult to use in practice, both because the resulting optimisation problems can be challenging…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 963 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Exact Shape Correspondence via 2D graph convolution
            00:57

            Exact Shape Correspondence via 2D graph convolution

            Fanseu Kamhoua Barakeel, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Graph Reordering for Cache-Efficient Near Neighbor Search
            05:17

            Graph Reordering for Cache-Efficient Near Neighbor Search

            Ben Coleman, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
            09:27

            TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

            Dylan Z. Slack, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Self-explaining deep models with logic rule reasoning
            05:02

            Self-explaining deep models with logic rule reasoning

            Seungeon Lee, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A theory of learning with constrained wieht-distribution
            04:52

            A theory of learning with constrained wieht-distribution

            Weishun Zhong, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Measuring Excess Capacity in Neural Networks
            05:01

            On Measuring Excess Capacity in Neural Networks

            Florian Graf, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen