Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time

            Nov 28, 2022

            Sprecher:innen

            HY

            Huaxiu Yao

            Sprecher:in · 0 Follower:innen

            CC

            Caroline Choi

            Sprecher:in · 0 Follower:innen

            YL

            Yoonho Lee

            Sprecher:in · 0 Follower:innen

            Über

            Distribution shifts occur when the test distribution differs from the training distribution, and can considerably degrade performance of machine learning models deployed in the real world. While recent works have studied robustness to distribution shifts, distribution shifts arising from the passage of time have the additional structure of timestamp metadata. Real-world examples of such shifts are underexplored, and it is unclear whether existing models can leverage trends in past distribution s…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 963 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Calibrated Perception Uncertainty Across Objects and Regions in Bird's-Eye-View
            03:20

            Calibrated Perception Uncertainty Across Objects and Regions in Bird's-Eye-View

            Markus Kängsepp, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Riemannian Score-Based Generative Modeling
            05:14

            Riemannian Score-Based Generative Modeling

            Valentin De Bortoli, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Causality for Temporal Unfairness Evaluation and Mitigation
            14:51

            Causality for Temporal Unfairness Evaluation and Mitigation

            Aida Rahmattalabi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            LBD: Decouple Relevance and Observation for Individual-Level Unbiased Learning to Rank
            04:55

            LBD: Decouple Relevance and Observation for Individual-Level Unbiased Learning to Rank

            Mouxiang Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contextual Transformer for Offline Meta Offline  Reinforcement Learning
            04:29

            Contextual Transformer for Offline Meta Offline Reinforcement Learning

            Runji Lin, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AntiFaceGAN: Animatable 3D-Aware Face Image Generation for Realistic Video Avatars
            01:03

            AntiFaceGAN: Animatable 3D-Aware Face Image Generation for Realistic Video Avatars

            Yue Wu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen