Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: 3DOS: Towards Open Set 3D Learning: Benchmarking and Understanding Semantic Novelty Detection on Pointclouds
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            3DOS: Towards Open Set 3D Learning: Benchmarking and Understanding Semantic Novelty Detection on Pointclouds
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            3DOS: Towards Open Set 3D Learning: Benchmarking and Understanding Semantic Novelty Detection on Pointclouds

            Nov 28, 2022

            Sprecher:innen

            AA

            Antonio Alliegro

            Sprecher:in · 0 Follower:innen

            FCB

            Francesco Cappio Borlino

            Sprecher:in · 0 Follower:innen

            TT

            Tatiana Tommasi

            Sprecher:in · 0 Follower:innen

            Über

            In recent years there has been significant progress in the field of 3D learning on classification, detection and segmentation problems. The vast majority of the existing studies focus on canonical closed-set conditions, neglecting the intrinsic open nature of the real-world. This limits the abilities of robots and autonomous systems involved in safety-critical applications that require managing novel and unknown signals. In this context exploiting 3D data can be a valuable asset since it provide…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 960 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Normalizing Flows for Knockoff-free Controlled Feature Selection
            06:19

            Normalizing Flows for Knockoff-free Controlled Feature Selection

            Derek Hansen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AutoML for Climate Change: A Call to Action
            04:50

            AutoML for Climate Change: A Call to Action

            Renbo Tu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Value-based CTDE Methods in Symmetric Two-team Markov Game: from Cooperation to Team Competition
            04:50

            Value-based CTDE Methods in Symmetric Two-team Markov Game: from Cooperation to Team Competition

            Pascal Leroy, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Embeddings for Numerical Features in Tabular Deep Learning
            04:47

            On Embeddings for Numerical Features in Tabular Deep Learning

            Yury Gorishniy, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Train Offline, Test Online: A Real Robot Learning Benchmark
            12:52

            Train Offline, Test Online: A Real Robot Learning Benchmark

            Gaoyue Zhou, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
            05:01

            CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks

            Xuanli He, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen