Towards Parameter-Efficient Automation of Data Wrangling Tasks with Prefix-Tuning

2. Prosinec 2022


O prezentaci

Data wrangling tasks for data integration and cleaning arise in virtually every data-driven application scenario nowadays. Recent research indicated the astounding potential of Large Language Models (LLMs) for such tasks. The automation of data wrangling with LLMs poses additional challenges, however, as hand-tuning task and data-specific prompts for LLMs requires high expertise and manual effort. On the other hand, finetuning a whole LLM is more amenable to automation, but incurs high storage costs, as a copy of the LLM has to be maintained.In this work, we explore the potential of a lightweight alternative to finetuning an LLM, which automatically learns a continuous prompt. This approach called prefix-tuning does not require updating the original LLM parameters, and can therefore re-use a single LLM instance across tasks. At the same time, it is amenable to automation, as continuous prompts can be automatically learned with standard techniques.We evaluate prefix-tuning on common data wrangling tasks for tabular data such as entity matching, error detection, and data imputation, with promising results. We find that in six out of ten cases, prefix-tuning is within 2.3


Uložení prezentace

Měla by být tato prezentace uložena po dobu 1000 let?

Jak ukládáme prezentace

Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %


Doporučená videa

Prezentace na podobné téma, kategorii nebo přednášejícího

Zajímají Vás podobná videa? Sledujte NeurIPS 2022