Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: AutoML-based Almond Yield Prediction and Projection in California
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            AutoML-based Almond Yield Prediction and Projection in California
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            AutoML-based Almond Yield Prediction and Projection in California

            Dez 2, 2022

            Sprecher:innen

            SD

            Shiheng Duan

            Sprecher:in · 0 Follower:innen

            SW

            Shuaiqi Wu

            Sprecher:in · 0 Follower:innen

            EM

            Erwan Monier

            Sprecher:in · 0 Follower:innen

            Über

            Almonds are one of the most lucrative products of California, but are also among the most sensitive to climate change. In order to better understand the relationship between climatic factors and almond yield, an automated machine learning framework is used to build a collection of machine learning models. The prediction skill is assessed using historical records. Future projections are derived using 17 downscaled climate outputs. The ensemble mean projection displays almond yield changes under t…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
            05:07

            Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization

            Idan Amir, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Target alignment in truncated kernel ridge regression
            04:50

            Target alignment in truncated kernel ridge regression

            Arash Amini, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning
            01:01

            MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning

            Jiangmeng Li, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Meta-Learning Within a Lifetime
            30:10

            Meta-Learning Within a Lifetime

            Mengye Ren

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Diffusion Models for Inverse Problems using Manifold Constraints
            05:07

            Improving Diffusion Models for Inverse Problems using Manifold Constraints

            Hyungjin Chung, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Coresets for Relational Data and The Applications
            04:58

            Coresets for Relational Data and The Applications

            Jiaxiang Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen