Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Positional Encoder Graph Neural Networks for Geographic Data
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Positional Encoder Graph Neural Networks for Geographic Data
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Positional Encoder Graph Neural Networks for Geographic Data

            Dez 2, 2022

            Sprecher:innen

            KK

            Konstantin Klemmer

            Sprecher:in · 0 Follower:innen

            NS

            Nathan Safir

            Sprecher:in · 0 Follower:innen

            DBN

            Daniel B. Neill

            Sprecher:in · 0 Follower:innen

            Über

            Modeling spatial dependencies in geographic data is of crucial importance for the modeling of our planet. Graph neural networks (GNNs) provide a powerful and scalable solution for modeling continuous spatial data. However, in the absence of further context on the geometric structure of the data, they often rely on Euclidean distances to construct the input graphs. This assumption can be improbable in many real-world settings, where the spatial structure is more complex and explicitly non-Euclid…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Hard battles and easy victories in robustifying NLP models
            26:24

            Hard battles and easy victories in robustifying NLP models

            He He

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem
            05:22

            Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem

            Ruichen Jiang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Data-Efficient Augmentation for Training Neural Networks
            04:42

            Data-Efficient Augmentation for Training Neural Networks

            Tian Yu Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms
            05:13

            Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms

            Qin Ding, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
            05:28

            Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning

            Anastasiia Koloskova, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Infinite-Horizon Average-Reward Restless Multi-Action Bandits via Index Awareness
            04:15

            Learning Infinite-Horizon Average-Reward Restless Multi-Action Bandits via Index Awareness

            Guojun Xiong, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen