Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Curriculum Based Reinforcement Learning to Avert Cascading Failures in the Electric Grid
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Curriculum Based Reinforcement Learning to Avert Cascading Failures in the Electric Grid
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Curriculum Based Reinforcement Learning to Avert Cascading Failures in the Electric Grid

            Dez 2, 2022

            Sprecher:innen

            ARRM

            Amarsagar Reddy Ramapuram Matavalam

            Sprecher:in · 0 Follower:innen

            YW

            Yang Weng

            Sprecher:in · 0 Follower:innen

            KG

            Krishan Guddanti

            Sprecher:in · 0 Follower:innen

            Über

            We present an approach to integrate the domain knowledge of the electric power grid operations into reinforcement learning (RL) frameworks for effectively learning RL agents to prevent cascading failures. A curriculum-based approach with reward tuning is incorporated into the training procedure by modifying the environment using the network physics. Our procedure is tested on an actor-critic-based agent on the IEEE 14-bus test system using the RL environment developed by RTE, the French transmis…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 951 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Wasserstein K-means for clustering probability distributions
            05:02

            Wasserstein K-means for clustering probability distributions

            Yubo Zhuang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
            04:58

            Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

            Haokun Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Mining Unseen Classes via Regional Objectness: A Simple Baseline for Incremental Segmentation
            01:01

            Mining Unseen Classes via Regional Objectness: A Simple Baseline for Incremental Segmentation

            Zekang Zhang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            RORL: Robust Offline Reinforcement Learning via Conservative Smoothing
            01:02

            RORL: Robust Offline Reinforcement Learning via Conservative Smoothing

            Rui Yang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
            05:15

            Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence

            Sunghwan Hong

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing Remarks
            01:31

            Closing Remarks

            Lia Coleman

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen