Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Multi-skill Mobile Manipulation for Object Rearrangement
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Multi-skill Mobile Manipulation for Object Rearrangement
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Multi-skill Mobile Manipulation for Object Rearrangement

            Dez 2, 2022

            Sprecher:innen

            JG

            Jiayuan Gu

            Sprecher:in · 0 Follower:innen

            DSC

            Devendra Singh Chaplot

            Sprecher:in · 0 Follower:innen

            HS

            Hao Su

            Sprecher:in · 0 Follower:innen

            Über

            We study a modular approach to tackle long-horizon mobile manipulation tasks for object rearrangement, which decomposes a full task into a sequence of subtasks. To tackle the entire task, prior work chains multiple stationary manipulation skills with a point-goal navigation skill, which are learned individually on subtasks. Although more effective than monolithic end-to-end RL policies, this framework suffers from compounding errors in skill chaining, e.g., navigating to a bad location where a s…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 962 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Trajectory of Mini-Batch Momentum: Batch Size Saturation and Convergence in High Dimensions
            04:41

            Trajectory of Mini-Batch Momentum: Batch Size Saturation and Convergence in High Dimensions

            Kiwon Lee, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?
            05:01

            How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?

            Chengxu Zhuang, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Wasserstein Logistic Regression with Mixed Features
            04:55

            Wasserstein Logistic Regression with Mixed Features

            Aras Selvi, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts
            04:40

            Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts

            Nina Balcan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adversarial training for high-stakes reliability
            04:48

            Adversarial training for high-stakes reliability

            Daniel Ziegler, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            VLMbench: A Compositional Benchmark for Vision-and-Language Manipulation
            04:44

            VLMbench: A Compositional Benchmark for Vision-and-Language Manipulation

            Kaizhi Zheng, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen