Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: The Benefits of Model-Based Generalization in Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            The Benefits of Model-Based Generalization in Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            The Benefits of Model-Based Generalization in Reinforcement Learning

            Dez 2, 2022

            Sprecher:innen

            KY

            Kenny Young

            Řečník · 0 sledujících

            AR

            Aditya Ramesh

            Řečník · 1 sledující

            LK

            Louis Kirsch

            Řečník · 0 sledujících

            Über

            Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved extremely effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. Ho…

            Organisator

            N2
            N2

            NeurIPS 2022

            Účet · 962 sledujících

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
            05:01

            Sparse Gaussian Process Hyperparameters: Optimize or Integrate?

            Vidhi Lalchand, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            “Today we talk to the machine” - Unveiling data for providing micro-credit loans using conversational systems.
            05:32

            “Today we talk to the machine” - Unveiling data for providing micro-credit loans using conversational systems.

            Heloisa Candello, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Panel 3: Geographic disparities in where research is produced
            37:46

            Panel 3: Geographic disparities in where research is produced

            Pablo Castro, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            A Variational Edge Partition Model for Supervised Graph Representation Learning
            04:54

            A Variational Edge Partition Model for Supervised Graph Representation Learning

            Yilin He, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Reinforcement Learning with Automated Auxiliary Loss Search
            04:41

            Reinforcement Learning with Automated Auxiliary Loss Search

            Tairan He, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            LBD: Decouple Relevance and Observation for Individual-Level Unbiased Learning to Rank
            01:02

            LBD: Decouple Relevance and Observation for Individual-Level Unbiased Learning to Rank

            Mouxiang Chen, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen