Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Streaming Radiance Fields for 3D Video Synthesis
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Streaming Radiance Fields for 3D Video Synthesis
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Streaming Radiance Fields for 3D Video Synthesis

            Dez 6, 2022

            Sprecher:innen

            LL

            Lingzhi Li

            Sprecher:in · 0 Follower:innen

            ZS

            Zhen Shen

            Sprecher:in · 0 Follower:innen

            ZW

            Zhongshu Wang

            Sprecher:in · 0 Follower:innen

            Über

            We present an explicit-grid based method for efficiently reconstructing streaming radiance fields for novel view synthesis of real world dynamic scenes. Instead of training a single model that combines all the frames, we formulate the dynamic modeling problem with an incremental learning paradigm in which per-frame model difference is trained to complement the adaption of a base model on the current frame. By exploiting the simple yet effective strategy of tuning with narrow bands, the proposed…

            Organisator

            N2
            N2

            NeurIPS 2022

            Konto · 961 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            On-Demand Sampling: Learning Optimally from Multiple Distributions
            05:06

            On-Demand Sampling: Learning Optimally from Multiple Distributions

            Nika Haghtalab, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Predictive Multiplicity in Probabilistic Classification
            03:04

            Predictive Multiplicity in Probabilistic Classification

            Jamelle Watson-Daniels, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Data-Efficient Augmentation for Training Neural Networks
            04:42

            Data-Efficient Augmentation for Training Neural Networks

            Tian Yu Liu, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Brain Network Transformer
            01:04

            Brain Network Transformer

            Xuan Kan, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            02:09

            Opening Remarks

            Qi Dou

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Private GANs, Revisited
            02:11

            Private GANs, Revisited

            Alex Bie, …

            N2
            N2
            NeurIPS 2022 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2022 folgen