Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Iterative Approximate Cross-Validation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-008-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-008-alpha.b-cdn.net
      • sl-yoda-v2-stream-008-beta.b-cdn.net
      • 1159783934.rsc.cdn77.org
      • 1511376917.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Iterative Approximate Cross-Validation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Iterative Approximate Cross-Validation

            Jul 24, 2023

            Sprecher:innen

            YL

            Yuetian Luo

            Sprecher:in · 0 Follower:innen

            ZR

            Zhimei Ren

            Sprecher:in · 0 Follower:innen

            RFB

            Rina Foygel Barber

            Sprecher:in · 0 Follower:innen

            Über

            Cross-validation (CV) is one of the most popular tools for assessing and selecting predictive models. However, standard CV suffers from high computational cost when the number of folds is large. Recently, under the empirical risk minimization (ERM) framework, a line of works proposed efficient methods to approximate CV based on the solution of the ERM problem trained on the full data set. However, in large-scale problems, it can be hard to obtain the exact solution of the ERM problem, either due…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Formal Control Synthesis for Stochastic Neural Network Dynamic Models
            13:32

            Formal Control Synthesis for Stochastic Neural Network Dynamic Models

            Steven Adams, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning
            05:14

            DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning

            Zifeng Wang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Coresets for Clustering in Small Dimensional Euclidean Spaces
            05:06

            On Coresets for Clustering in Small Dimensional Euclidean Spaces

            Lingxiao Huang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Optimal Advantage from Preferences and Mistaking it for Reward
            18:20

            Learning Optimal Advantage from Preferences and Mistaking it for Reward

            W. Bradley Knox, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
            04:53

            Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time

            Toon Vanderschueren, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fairness in Matching under Uncertainty
            05:04

            Fairness in Matching under Uncertainty

            Sid Devic, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen