Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation

            Jul 24, 2023

            Sprecher:innen

            HF

            Hendrik Fichtenberger

            Sprecher:in · 0 Follower:innen

            MH
            MH

            Monika Henzinger

            Sprecher:in · 0 Follower:innen

            JU

            Jalaj Upadhyay

            Sprecher:in · 0 Follower:innen

            Über

            We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix M_𝖼𝗈𝗎𝗇𝗍 and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and low…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            General Covariance Data Augmentation for Neural PDE Solvers
            04:41

            General Covariance Data Augmentation for Neural PDE Solvers

            Vladimir Fanaskov, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Anti-Exploration by Random Network Distillation
            03:36

            Anti-Exploration by Random Network Distillation

            Alexander Nikulin, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
            07:13

            Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond

            Jaeyoung Cha, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Exponential Smoothing for Off-Policy Learning
            05:20

            Exponential Smoothing for Off-Policy Learning

            Imad Aouali, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            VA-learning As a More Efficient Alternative to Q-learning
            03:48

            VA-learning As a More Efficient Alternative to Q-learning

            Yunhao Tang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Understanding the Impact of Adversarial Robustness on Accuracy Disparity
            04:28

            Understanding the Impact of Adversarial Robustness on Accuracy Disparity

            Yuzheng Hu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen