Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: A Closer Look at the Intervention Procedure of Concept Bottleneck Models
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            A Closer Look at the Intervention Procedure of Concept Bottleneck Models
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            A Closer Look at the Intervention Procedure of Concept Bottleneck Models

            Jul 24, 2023

            Sprecher:innen

            SS

            Sungbin Shin

            Sprecher:in · 0 Follower:innen

            YJ

            Yohan Jo

            Sprecher:in · 0 Follower:innen

            SA

            Sungsoo Ahn

            Sprecher:in · 0 Follower:innen

            Über

            Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts. Unlike the standard end-to-end models, CBMs enable domain experts to intervene on the predicted concepts and rectify any mistakes at test time, so that more accurate task predictions can be made at the end. While such intervenability provides a powerful avenue of control, many aspects of the intervention procedure remain rather un…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Diffusion Based Representation Learning
            05:02

            Diffusion Based Representation Learning

            Sarthak Mittal, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Attributing Image Generative Models using Latent Fingerprints
            04:39

            Attributing Image Generative Models using Latent Fingerprints

            Guangyu Nie, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Towards Unbiased Training in Federated Open-world Semi-supervised Learning
            05:07

            Towards Unbiased Training in Federated Open-world Semi-supervised Learning

            Jie Zhang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Is RLHF More Difficult than Standard RL?
            31:04

            Is RLHF More Difficult than Standard RL?

            Chi Jin

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            04:05

            Opening Remarks

            Felix Petersen

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            IRNeXt: Rethinking Convolutional Network Design for Image Restoration
            05:14

            IRNeXt: Rethinking Convolutional Network Design for Image Restoration

            Yuning Cui, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen