Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

            Jul 24, 2023

            Sprecher:innen

            JW

            Junran Wu

            Sprecher:in · 0 Follower:innen

            XC

            Xueyuan Chen

            Sprecher:in · 0 Follower:innen

            BS

            Bowen Shi

            Sprecher:in · 0 Follower:innen

            Über

            In contrastive learning, the choice of “view” controls the information that the representation captures and influences the performance of the model. However, leading graph contrastive learning methods generally produce views via random corruption or learning, which could lead to the loss of essential information and alteration of semantic information. An anchor view that maintains the essential information of input graphs for contrastive learning has been hardly investigated. In this paper, base…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Geometry, dynamics, optimization and generalization in high dimensions
            47:13

            Geometry, dynamics, optimization and generalization in high dimensions

            Surya Ganguli

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Abstracting Imperfect Information Away from Two-Player Zero-Sum Games
            05:16

            Abstracting Imperfect Information Away from Two-Player Zero-Sum Games

            Samuel Sokota, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CounTS: Self-Interpretable Time Series Prediction with Counterfactual Explanations
            05:15

            CounTS: Self-Interpretable Time Series Prediction with Counterfactual Explanations

            Jingquan Yan, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Shape-Guided Dual-Memory Learning for 3D Anomaly Detection
            05:03

            Shape-Guided Dual-Memory Learning for 3D Anomaly Detection

            Yu-Min Chu, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
            05:02

            MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

            Omer Bar-Tal, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Evidential Interactive Learning for Medical Image Captioning
            05:20

            Evidential Interactive Learning for Medical Image Captioning

            Ervine Zheng, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen