Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: CrossSplit: Mitigating Label Noise Memorization through Data Splitting
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            CrossSplit: Mitigating Label Noise Memorization through Data Splitting
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            CrossSplit: Mitigating Label Noise Memorization through Data Splitting

            Jul 24, 2023

            Sprecher:innen

            JK

            Jihye Kim

            Sprecher:in · 0 Follower:innen

            AB

            Aristide Baratin

            Sprecher:in · 0 Follower:innen

            YZ

            Yan Zhang

            Sprecher:in · 0 Follower:innen

            Über

            We approach the problem of improving robustness of deep learning algorithms in the presence of label noise. Building upon existing label correction and co-teaching methods, we propose a novel training procedure to mitigate the memorization of noisy labels, called CrossSplit, which uses a pair of neural networks trained on two disjoint parts of the labelled dataset. CrossSplit combines two main ingredients: (i) Cross-split label correction. The idea is that, since the model trained on one part of…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Competitive Gradient Optimisation
            05:47

            Competitive Gradient Optimisation

            Abhijeet Vyas, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Policy Mirror Ascent for Efficient and Independent Learning in Mean Field Games
            04:48

            Policy Mirror Ascent for Efficient and Independent Learning in Mean Field Games

            Batuhan Yardim, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            RLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents
            03:55

            RLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents

            Rafael Rodriguez-Sanchez, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Provably Invariant Learning without Domain Information
            04:46

            Provably Invariant Learning without Domain Information

            Xiaoyu Tan, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs
            05:01

            ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs

            Ted Moskovitz, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            MNL-Bandit: Sequential Learning Approach to Assortment Selection
            28:44

            MNL-Bandit: Sequential Learning Approach to Assortment Selection

            Vineet Goyal, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen