Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Evolving Semantic Prototype Improves Generative Zero-Shot Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Evolving Semantic Prototype Improves Generative Zero-Shot Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Evolving Semantic Prototype Improves Generative Zero-Shot Learning

            Jul 24, 2023

            Sprecher:innen

            SC

            Shiming Chen

            Sprecher:in · 0 Follower:innen

            WH

            Wenjin Hou

            Sprecher:in · 0 Follower:innen

            ZH

            Ziming Hong

            Sprecher:in · 0 Follower:innen

            Über

            In zero-shot learning (ZSL), generative methods synthesize class-related sample features based on predefined semantic prototypes. They advance the ZSL performance by synthesizing unseen class sample features for better training the classifier. We observe that each class's predefined semantic prototype (also referred to as semantic embedding or condition) does not accurately match its real semantic prototype. So the synthesized visual sample features do not faithfully represent the real sample fe…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Robust Collaborative Learning with Linear Gradient Overhead
            05:20

            Robust Collaborative Learning with Linear Gradient Overhead

            Sadegh Farhadkhani, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-Modal Biomarker Extraction Framework for Therapy Monitoring of Social Anxiety and Depression Using Audio and Video
            11:43
            MNL-Bandit: Sequential Learning Approach to Assortment Selection
            28:44

            MNL-Bandit: Sequential Learning Approach to Assortment Selection

            Vineet Goyal, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ModelDiff: A Framework for Comparing Learning Algorithms
            05:44

            ModelDiff: A Framework for Comparing Learning Algorithms

            Harshay Shah, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Uncertainty Quantification for Healthcare Applications
            31:36

            Uncertainty Quantification for Healthcare Applications

            Jimeng Sun

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision
            04:58

            Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision

            Arturs Berzins

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen