Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Automatically Marginalized MCMC in Probabilistic Programming
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Automatically Marginalized MCMC in Probabilistic Programming
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Automatically Marginalized MCMC in Probabilistic Programming

            Jul 24, 2023

            Sprecher:innen

            JL

            Jinlin Lai

            Sprecher:in · 0 Follower:innen

            JB

            Javier Burroni

            Sprecher:in · 0 Follower:innen

            HG

            Hui Guan

            Sprecher:in · 0 Follower:innen

            Über

            Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from Bayesian models. The advent of probabilistic programming languages (PPLs) frees users from writing inference algorithms and lets users focus on modeling. However, many models are difficult for HMC to solve directly, which often require tricks like model reparameterization. We are motivated by the fact that many of those models could be simplified by marginalization. We propose to use automatic marginalization a…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            ODS: Test-Time Adaptation in the Presence of Open-World Data Shift
            07:34

            ODS: Test-Time Adaptation in the Presence of Open-World Data Shift

            Zhi Zhou, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Power of Uniform Sampling for k-Median
            05:14

            The Power of Uniform Sampling for k-Median

            Lingxiao Huang, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale
            04:30

            One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale

            Fan Bao, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Provable Benefit of Mixup for Finding Optimal Decision Boundaries
            05:18

            Provable Benefit of Mixup for Finding Optimal Decision Boundaries

            Junsoo Oh, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis
            05:05

            Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

            Yongho Shin, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            GRIL: a 2-parameter Persistence Based Vectorization for Machine Learning
            10:54

            GRIL: a 2-parameter Persistence Based Vectorization for Machine Learning

            Cheng Xin, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen