Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Slice Sufficient Statistics for Likelihood-free Inference
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Slice Sufficient Statistics for Likelihood-free Inference
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Slice Sufficient Statistics for Likelihood-free Inference

            Jul 24, 2023

            Sprecher:innen

            Über

            Likelihood-free inference (LFI) is techniques for inference in implicit statistical models. A longstanding question in LFI has been how to design or learn good summary statistics of data, but this might now seem unnecessary due to the advent of recent end-to-end (i.e. neural network-based) LFI methods. In this work, we rethink this question with a novel method for learning summary statistics. We show that learning sufficient statistics may be easier than direct posterior inference, as the former…

            Organisator

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen