Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels

            Jul 24, 2023

            Sprecher:innen

            XY

            Xuchen You

            Řečník · 0 sledujících

            SC

            Shouvanik Chakrabarti

            Řečník · 0 sledujících

            BC

            Boyang Chen

            Řečník · 0 sledujících

            Über

            A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. It can be used for supervised learning when combined with classical gradient-based optimizers. Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood. Inspired by the success of the neural tangent kernels (NTKs) in probing into the dynamics of classical neural networks, a recent line of…

            Organisator

            I2
            I2

            ICML 2023

            Účet · 657 sledujících

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            AI and Marginalized Languages
            1:26:45

            AI and Marginalized Languages

            Shruti Rijhwani, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Approximately Optimal Core Shapes for Tensor Decompositions
            05:33

            Approximately Optimal Core Shapes for Tensor Decompositions

            Matthew Fahrbach, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Surrogate Module Learning: Reduce the Gradient Error Accumulation in Training Spiking Neural Networks
            05:08

            Surrogate Module Learning: Reduce the Gradient Error Accumulation in Training Spiking Neural Networks

            Shikuang Deng, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Adaptive Smoothing Gradient Learning for Spiking Neural Networks
            05:09

            Adaptive Smoothing Gradient Learning for Spiking Neural Networks

            Zi-Ming Wang, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Improving Adversarial Robustness by Sample-Efficient Synthetic Data Generation
            04:51

            Improving Adversarial Robustness by Sample-Efficient Synthetic Data Generation

            Yidong Ouyang, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Neural Algorithmic Reasoning with Causal Regularisation
            05:21

            Neural Algorithmic Reasoning with Causal Regularisation

            Beatrice Bevilacqua, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen