Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-008-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-008-alpha.b-cdn.net
      • sl-yoda-v2-stream-008-beta.b-cdn.net
      • 1159783934.rsc.cdn77.org
      • 1511376917.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics

            Dez 10, 2023

            Sprecher:innen

            KM

            Koen Minartz

            Sprecher:in · 0 Follower:innen

            YP

            Yoeri Poels

            Sprecher:in · 0 Follower:innen

            SK

            Simon Koop

            Sprecher:in · 0 Follower:innen

            Über

            Neural networks are emerging as a tool for scalable data-driven simulation of high-dimensional dynamical systems, especially in settings where numerical methods are infeasible or computationally expensive. Notably, it has been shown that incorporating domain symmetries in deterministic neural simulators can substantially improve their accuracy, sample efficiency, and parameter efficiency. However, to incorporate symmetries in probabilistic neural simulators that can simulate stochastic phenomena…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 648 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Foundation Models for Robotic Manipulation
            26:34

            Foundation Models for Robotic Manipulation

            Chelsea Finn

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels
            04:32

            Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels

            Zebin You, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning To Dive In Branch And Bound
            04:32

            Learning To Dive In Branch And Bound

            Max B. Paulus, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            New Complexity-Theoretic Frontiers of Tractability for Neural Network Training
            05:01

            New Complexity-Theoretic Frontiers of Tractability for Neural Network Training

            Cornelius Brand, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Optimal Preconditioning and Fisher Adaptive Langevin Sampling
            04:57

            Optimal Preconditioning and Fisher Adaptive Langevin Sampling

            Michalis K. Titsias

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Noether Embedding: Efficient Learning of Temporal Regularities
            03:39

            Noether Embedding: Efficient Learning of Temporal Regularities

            Chi Gao, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen