Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Reinforcement Learning in agent-based modeling to reduce carbon emissions in transportation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Reinforcement Learning in agent-based modeling to reduce carbon emissions in transportation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Reinforcement Learning in agent-based modeling to reduce carbon emissions in transportation

            Dez 15, 2023

            Sprecher:innen

            YY

            Yuhao Yuan

            Sprecher:in · 0 Follower:innen

            FLdS

            Felipe Leno da Silva

            Sprecher:in · 0 Follower:innen

            RG

            Ruben Glatt

            Sprecher:in · 0 Follower:innen

            Über

            This paper explores the integration of reinforcement learning (RL) into transportation simulations to explore system interventions to reduce greenhouse gas emissions. The study leverages the Behavior, Energy, Automation, and Mobility (BEAM) transportation simulation framework in conjunction with the Berkeley Integrated System for Transportation Optimization (BISTRO) for scenario development. The main objective is to determine optimal parameters for transportation simulations to increase public t…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 645 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Federated Compositional Deep AUC Maximization
            04:34

            Federated Compositional Deep AUC Maximization

            Xinwen Zhang, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            i.equalcare: Nonprofit for More Equitable AI in Healthcare
            05:17

            i.equalcare: Nonprofit for More Equitable AI in Healthcare

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models
            05:46

            LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models

            Yixiao Li, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            HyperFast: Instant Classification for Tabular Data
            05:54

            HyperFast: Instant Classification for Tabular Data

            David Bonet, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            StyleGAN knows Normal, Depth, Albedo, and More
            05:00

            StyleGAN knows Normal, Depth, Albedo, and More

            Anand Bhattad, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            High Precision Causal Model Evaluation with Conditional Randomization
            04:38

            High Precision Causal Model Evaluation with Conditional Randomization

            Chao Ma, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen