Next
Unsupervised Learning
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Supervised and Transfer Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Supervised and Transfer Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Supervised and Transfer Learning

            Jun 13, 2019

            Sprecher:innen

            AM

            Aditya Menon

            Sprecher:in · 3 Follower:innen

            AS

            Armando Solar-Lezama

            Sprecher:in · 0 Follower:innen

            AM

            Arthur Mensch

            Sprecher:in · 0 Follower:innen

            Über

            Geometric Losses for Distributional Learning Building upon recent advances in entropy-regularized optimal transport and upon Fenchel duality between measures and continuous functions, we propose in this paper a generalization of the logistic loss, incorporating a metric or cost between classes. Unlike previous attempts to use optimal transport distances for learning, our loss results in unconstrained convex objective functions, supports infinite (or very large) class spaces, and naturally defin…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            AI Commons
            06:59

            AI Commons

            Yoshua Bengio

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Human-machine collaboration for efficient segmentation annotation
            19:32

            Human-machine collaboration for efficient segmentation annotation

            Vittorio Ferrari

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-Task Learning in the Wilderness
            32:13

            Multi-Task Learning in the Wilderness

            Andrej Karpathy

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 17 = 1.7%

            Robust Statistics and Machine Learning
            1:15:14

            Robust Statistics and Machine Learning

            Ameer Mohammed, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Time Series
            1:19:52

            Time Series

            Alex Smola, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Continual Adaptation for Efficient Machine Communication (Contributed Talk)
            11:41

            Continual Adaptation for Efficient Machine Communication (Contributed Talk)

            Minae Kwon

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen