Next
Unsupervised Learning
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Supervised and Transfer Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Supervised and Transfer Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Supervised and Transfer Learning

            Jun 13, 2019

            Sprecher:innen

            AM

            Aditya Menon

            Sprecher:in · 3 Follower:innen

            AS

            Armando Solar-Lezama

            Sprecher:in · 0 Follower:innen

            AM

            Arthur Mensch

            Sprecher:in · 0 Follower:innen

            Über

            Geometric Losses for Distributional Learning Building upon recent advances in entropy-regularized optimal transport and upon Fenchel duality between measures and continuous functions, we propose in this paper a generalization of the logistic loss, incorporating a metric or cost between classes. Unlike previous attempts to use optimal transport distances for learning, our loss results in unconstrained convex objective functions, supports infinite (or very large) class spaces, and naturally defin…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            CodeNet: Training Large-Scale Neural Networks in Presence of Soft-Errors
            09:11

            CodeNet: Training Large-Scale Neural Networks in Presence of Soft-Errors

            Sanghamitra Dutta

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Relative goodness-of-fit tests for models with latent variables
            33:26

            Relative goodness-of-fit tests for models with latent variables

            Arthur Gretton

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            General ML
            1:16:05

            General ML

            Alexander Mathiasen, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Trajectory Forecasting with Multi-Modal Distributions
            21:10

            Trajectory Forecasting with Multi-Modal Distributions

            Kris M. Kitani

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Non-convex Optimization
            1:09:37

            Non-convex Optimization

            Ankit Singla, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unsupervised Learning
            1:11:14

            Unsupervised Learning

            Abubakar Abid, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen