Applications: Natural Language Processing

Jun 13, 2019

Speakers

About

Analogies Explained: Towards Understanding Word Embeddings Word embeddings generated by neural network methods such as word2vec (W2V) are well known to exhibit seemingly linear behaviour, e.g. the embeddings of analogy queen is to woman as king is to man approximately describe a parallelogram. This property is particularly intriguing since the embeddings are not trained to achieve it. Several explanations have been proposed, but each introduces assumptions that do not hold in practice. We derive a probabilistically grounded definition of paraphrasing and show it can be re-interpreted as word transformation, a mathematical description of wxistowy. From these concepts we prove existence of the linear relationship between W2V-type embeddings that underlies the analogical phenomenon, and identify explicit error terms in the relationship. Parameter-Efficient Transfer Learning for NLP Fine-tuning large pretrained models is an effective transfer mechanism in NLP. However, in the presence of many downstream tasks, fine-tuning is parameter inefficient: an entire new model is required for every task. As an alternative, we propose transfer with adapter modules. Adapter modules yield a compact and extensible model; they add only a few trainable parameters per task, and new tasks can be added without revisiting previous ones. The parameters of the original network remain fixed, yielding a high degree of parameter sharing. To demonstrate adapter's effectiveness, we transfer the recently proposed BERT Transformer model to 26 diverse text classification tasks, including the GLUE benchmark. Adapters attain near state-of-the-art performance, whilst adding only a few parameters per task. On GLUE, we attain within 0.8% of the performance of full fine-tuning, adding only 3.6% parameters per task. By contrast, fine-tuning trains 100% of the parameters per task. Efficient On-Device Models using Neural Projections Many applications involving visual and language understanding can be effectively solved using deep neural networks. Even though these techniques achieve state-of-the-art results, it is very challenging to apply them on devices with limited memory and computational capacity such as mobile phones, smart watches and IoT. We propose a neural projection approach for training compact on-device neural networks. We introduce "projection" network that uses locality-sensitive projections to generate compact binary representations and learn small neural networks with computationally efficient operations. We design a joint optimization framework where the projection network can be trained from scratch or leverage existing larger neural networks such as feed-forward NNs, CNNs or RNNs. The trained neural projection network can be directly used for inference on device at low memory and computation cost. We demonstrate the effectiveness of this as a general-purpose approach for significantly shrinking the memory requirements of different types of neural networks while preserving good accuracy on various visual recognition and text classification tasks. We also discuss novel extensions of the approach and derive projection models for other learning scenarios and real-world on-device applications. Deep Residual Output Layers for Neural Language Generation Many tasks, including language generation, benefit from learning the structure of the output space, particularly when the space of output labels is large and the data is sparse. State-of-the-art neural language models indirectly capture the output space structure in their classifier weights since they lack parameter sharing across output labels. Learning shared output label mappings helps, but existing methods have limited expressivity and are prone to overfitting. In this paper, we investigate the usefulness of more powerful shared mappings for output labels, and propose a deep residual output mapping with dropout between layers to better capture the structure of the output space and avoid overfitting. Evaluations on three language generation tasks show that our output label mapping can match or improve state-of-the-art recurrent and self-attention architectures, and suggest that the classifier does not necessarily need to be high-rank to better model natural language if it is better at capturing the structure of the output space. Improving Neural Language Modeling via Adversarial Training Recently, substantial progress has been made in language modeling by using deep neural networks. However, in practice, large scale neural language models have been shown to be prone to overfitting. In this paper, we present a simple yet highly effective adversarial training mechanism for regularizing neural language models. The idea is to introduce adversarial noise to the output embedding layer while training the models. We show that the optimal adversarial noise yields a simple closed form solution, thus allowing us to develop a simple and time efficient algorithm. Theoretically, we show that our adversarial mechanism effectively encourages the diversity of the embedding vectors, helping to increase the robustness of models. Empirically, we show that our method improves on the single model state-of-the-art results for language modeling on Penn Treebank (PTB) and Wikitext-2, achieving test perplexity scores of 46.42 and 38.65, respectively. When applied to machine translation, our method improves over various transformer-based translation baselines in BLEU scores on the WMT14 English-German and IWSLT14 German-English tasks. Mixture Models for Diverse Machine Translation: Tricks of the Trade Mixture models trained via EM are among the simplest, most widely used and well understood latent variable models in the machine learning literature. Surprisingly, these models have been hardly explored in text generation applications such as machine translation. In principle, they provide a latent variable to control generation and produce a diverse set of hypotheses. In practice, however, mixture models are prone to degeneracies---often only one component gets trained or the latent variable is simply ignored. We find that disabling dropout noise in responsibility computation is critical to successful training. In addition, the design choices of parameterization, prior distribution, hard versus soft EM and online versus offline assignment can dramatically affect model performance. We develop an evaluation protocol to assess both quality and diversity of generations against multiple references, and provide an extensive empirical study of several mixture model variants. Our analysis shows that certain types of mixture models are more robust and offer the best trade-off between translation quality and diversity compared to variational models and diverse decoding approaches. Our code will be made publicly available after the review process. MASS: Masked Sequence to Sequence Pre-training for Language Generation Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsked Sequence to Sequence pre-training (MASS) for the encoder-decoder based language generation tasks. MASS adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part of the sentence: its encoder takes a sentence with randomly masked fragment (several consecutive tokens) as input, and its decoder tries to predict this masked fragment. In this way, MASS can jointly train the encoder and decoder to develop the capability of representation extraction and language modeling. By further fine-tuning on a variety of zero/low-resource language generation tasks, including neural machine translation, text summarization and conversational response generation (3 tasks and totally 8 datasets), MASS achieves significant improvements over the baselines without pre-training or with other pre-training methods. Especially, we achieve the state-of-the-art accuracy (30.02 in terms of BLEU score) on the unsupervised English-French translation, even beating the early attention-based supervised model. Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops We study humor in Word Embeddings, a popular AI tool that associates each word with a Euclidean vector. We find that: (a) the word vectors capture multiple aspects of humor discussed in theories of humor; and (b) each individual's sense of humor can be represented by a vector, and that these sense-of-humor vectors accurately predict differences in people's sense of humor on new, unrated, words. The fact that single-word humor seems to be relatively easy for AI has implications for the study of humor in language. Humor ratings are taken from the work of Englethaler and Hills (2017) as well as our own crowdsourcing study of 120,000 words. MeanSum: A Neural Model for Unsupervised Multi-Document Abstractive Summarization Abstractive summarization has been studied using neural sequence transduction methods with datasets of large, paired document-summary examples. However, such datasets are rare and the models trained from them do not generalize to other domains. Recently, some progress has been made in learning sequence-to-sequence mappings with only unpaired examples. In our work, we consider the setting where there are only documents (product or business reviews) with no summaries provided, and propose an end-to-end, neural model architecture to perform unsupervised abstractive summarization. Our proposed model consists of an auto-encoder where the mean of the representations of the input reviews decodes to a reasonable summary-review. We consider variants of the proposed architecture and perform an ablation study to show the importance of specific components. We show through metrics and human evaluation that the generated summaries are highly abstractive, fluent, relevant, and representative of the average sentiment of the input reviews. Finally, we collect a ground-truth evaluation dataset and show that our model outperforms a strong extractive baseline. CHiVE: Varying Prosody in Speech Synthesis with a Linguistically Driven Dynamic Hierarchical Conditional Variational Network The prosodic aspects of speech signals produced by current text-to-speech systems are typically averaged over training material, and as such lack the variety and liveliness found in natural speech. To avoid monotony and averaged prosody contours, it is desirable to have a way of modeling the variation in the prosodic aspects of speech, so audio signals can be synthesized in multiple ways for a given text. We present a new, hierarchically structured conditional variational auto-encoder to generate prosodic features (F0, c0 and duration) suit- able for use with a vocoder or a generative model like WaveNet. At inference time, an embedding representing the prosody of a sentence may be sampled from the variational layer to allow for prosodic variation. To efficiently capture the hierarchical nature of the linguistic input (words, syllables and phones), both the encoder and decoder parts of the auto-encoder are hierarchical, in line with the linguistic structure, with layers being clocked dynamically at the respective rates. We show in our experiments that our dynamic hierarchical network outperforms a non-hierarchical state-of-the-art baseline. Additionally, we show that prosody transfer across sentences is possible by employing the prosody embedding of one sentence to generate the speech signal of another.

Organizer

Categories

About ICML 2019

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2019