Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Best Paper Award and Panel Discussion
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Best Paper Award and Panel Discussion
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Best Paper Award and Panel Discussion

            Jun 15, 2019

            Sprecher:innen

            JX

            Jianxiong Xiao

            Sprecher:in · 0 Follower:innen

            WB

            Wolfram Burgard

            Sprecher:in · 1 Follower:in

            Über

            A diverse set of methods have been devised to develop autonomous driving platforms. They range from modular systems, systems that perform manual decomposition of the problem, systems where the components are optimized independently, and a large number of rules are programmed manually, to end-to-end deep-learning frameworks. Today’s systems rely on a subset of the following: camera images, HD maps, inertial measurement units, wheel encoders, and active 3D sensors (LIDAR, radar). There is a genera…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            Transport und Maschinenbau

            Kategorie · 78 Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Real-time DL Graphics
            21:12

            Real-time DL Graphics

            Bryan Catanzaro

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Understanding Regularization of Batch Normalization and Beyond
            14:44

            Understanding Regularization of Batch Normalization and Beyond

            Ping Luo

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            15:31

            Opening Remarks

            Dawn Song

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion
            55:06

            Panel Discussion

            Andrew Ng, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Theory
            1:09:58

            Learning Theory

            Abhijin Adiga, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Efficient Lifelong Learning Algorithms: Regret Bounds and Statistical Guarantees
            29:03

            Efficient Lifelong Learning Algorithms: Regret Bounds and Statistical Guarantees

            Giulia Denevi

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen