Next
Applications: Natural Language Processing
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Non-convex Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Non-convex Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Non-convex Optimization

            Jun 13, 2019

            Sprecher:innen

            AS

            Ankit Singla

            Sprecher:in · 0 Follower:innen

            BZ

            Baojian Zhou

            Sprecher:in · 0 Follower:innen

            CZ

            Ce Zhang

            Sprecher:in · 0 Follower:innen

            Über

            Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning We study robust distributed learning that involves minimizing a non-convex loss function with saddle points. We consider the Byzantine setting where some worker machines have abnormal or even arbitrary and adversarial behavior. In this setting, the Byzantine machines may create fake local minima near a saddle point that is far away from any true local minimum, even when robust gradient estimators are used. We develop…

            Organisator

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Embodied language grounding
            22:31

            Embodied language grounding

            Katerina Fragkiadaki

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Optimization and Graphical Models
            1:00:33

            Optimization and Graphical Models

            Ashish Katiyar, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Predicting Tumor Mutation Burden from Histopathology Images Using Multiscale Deep Learning
            15:43

            Predicting Tumor Mutation Burden from Histopathology Images Using Multiscale Deep Learning

            Bryan He

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster Spotlights
            21:13

            Poster Spotlights

            Abhishek Kumar, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster spotlights #3
            13:34

            Poster spotlights #3

            Benson Chen, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reliable Clustering with Redundant Data Assignment
            07:57

            Reliable Clustering with Redundant Data Assignment

            Venkata Gandikota

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen