Další
Applications: Natural Language Processing
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Non-convex Optimization
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Titulky
      • Off
      • English (auto-generated)
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Non-convex Optimization
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Non-convex Optimization

            13. června 2019

            Řečníci

            AS

            Ankit Singla

            Sprecher:in · 0 Follower:innen

            BZ

            Baojian Zhou

            Sprecher:in · 0 Follower:innen

            CZ

            Ce Zhang

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning We study robust distributed learning that involves minimizing a non-convex loss function with saddle points. We consider the Byzantine setting where some worker machines have abnormal or even arbitrary and adversarial behavior. In this setting, the Byzantine machines may create fake local minima near a saddle point that is far away from any true local minimum, even when robust gradient estimators are used. We develop…

            Organizátor

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (ICML 2019)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Combinatorial Optimization
            1:15:12

            Combinatorial Optimization

            Abolfazl Hashemi, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CodeNet: Training Large-Scale Neural Networks in Presence of Soft-Errors
            09:11

            CodeNet: Training Large-Scale Neural Networks in Presence of Soft-Errors

            Sanghamitra Dutta

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Linguistic Scaffolds for Policy Learning
            27:32

            Linguistic Scaffolds for Policy Learning

            Jacob Andreas

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Exploiting redundancy for efficient processing of DNNs and beyond
            31:24

            Exploiting redundancy for efficient processing of DNNs and beyond

            Vivienne Sze

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Graph Classification Networks, Datasets and Baselines
            10:42

            On Graph Classification Networks, Datasets and Baselines

            Ben Day

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine learning: A new approach to drug discovery
            47:05

            Machine learning: A new approach to drug discovery

            Daphne Koller

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2019