Next
Convex Optimization
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Statistical Learning Theory
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Statistical Learning Theory
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Statistical Learning Theory

            Jun 12, 2019

            Sprecher:innen

            AM

            Aditya Menon

            Řečník · 3 sledující

            AR

            Alexander Rakhlin

            Řečník · 0 sledujících

            CSO

            Cheng Soon Ong

            Řečník · 3 sledující

            Über

            Monge blunts Bayes: Hardness Results for Adversarial Training The last few years have seen a staggering number of empirical studies of the robustness of neural networks in a model of adversarial perturbations of their inputs. Most rely on an adversary which carries out local modifications within prescribed balls. None however has so far questioned the broader picture: how to frame a \textit{resource-bounded} adversary so that it can be \textit{severely detrimental} to learning, a non-trivial pro…

            Organisator

            I2
            I2

            ICML 2019

            Účet · 3,2k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2019

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Continual Adaptation for Efficient Machine Communication (Contributed Talk)
            11:41

            Continual Adaptation for Efficient Machine Communication (Contributed Talk)

            Minae Kwon

            I2
            I2
            ICML 2019 6 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Motion and Prediction for Autonomous Driving
            25:44

            Motion and Prediction for Autonomous Driving

            Fisher Yu

            I2
            I2
            ICML 2019 6 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Flipping Sign Bits is All You Need to Craft Black-Box Adversarial Examples
            21:16

            Flipping Sign Bits is All You Need to Craft Black-Box Adversarial Examples

            Abdullah Al-Dujaili

            I2
            I2
            ICML 2019 6 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Relative goodness-of-fit tests for models with latent variables
            33:26

            Relative goodness-of-fit tests for models with latent variables

            Arthur Gretton

            I2
            I2
            ICML 2019 6 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            From Predictive to Caussal Modeling: Bridging the Gap
            29:08

            From Predictive to Caussal Modeling: Bridging the Gap

            Caroline Uhler

            I2
            I2
            ICML 2019 6 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Multi-Agent Imitation and Inverse Reinforcement Learning
            25:18

            Multi-Agent Imitation and Inverse Reinforcement Learning

            Stefano Ermon

            I2
            I2
            ICML 2019 6 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2019 folgen