Další
"Ideas" mini-spotlights
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Planetary Scale Monitoring of Urban Growth in High Flood Risk Areas
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Titulky
      • Off
      • English (auto-generated)
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Planetary Scale Monitoring of Urban Growth in High Flood Risk Areas
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Planetary Scale Monitoring of Urban Growth in High Flood Risk Areas

            14. června 2019

            Řečníci

            CC

            Christian Clough

            Sprecher:in · 0 Follower:innen

            RN

            Ramesh Nair

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Many in the machine learning community wish to take action on climate change, yet feel their skills are inapplicable. This workshop aims to show that in fact the opposite is true: while no silver bullet, ML can be an invaluable tool both in reducing greenhouse gas emissions and in helping society adapt to the effects of climate change. Climate change is a complex problem, for which action takes many forms - from designing smart electrical grids to tracking deforestation in satellite imagery. Man…

            Organizátor

            I2
            I2

            ICML 2019

            Konto · 3,2k Follower:innen

            Kategorie

            Geographie und Geowissenschaften

            Kategorie · 109 Präsentationen

            O organizátorovi (ICML 2019)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Householder meets Sylvester: Normalizing Flows for Variational Inference
            16:33

            Householder meets Sylvester: Normalizing Flows for Variational Inference

            Jakub Tomczak

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Strategic Perils of Learning from Historical Data
            18:50

            The Strategic Perils of Learning from Historical Data

            Jamie Morgenstern

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning Theory
            1:14:39

            Reinforcement Learning Theory

            Adrien Ali Taiga, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CodeNet: Training Large-Scale Neural Networks in Presence of Soft-Errors
            09:11

            CodeNet: Training Large-Scale Neural Networks in Presence of Soft-Errors

            Sanghamitra Dutta

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Why Deep Learning Works: Traditional and Heavy-Tailed Implicit Self-Regularization in Deep Neural Networks
            35:07

            Why Deep Learning Works: Traditional and Heavy-Tailed Implicit Self-Regularization in Deep Neural Networks

            Michael W. Mahoney

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Information Theory and Estimation
            1:11:55

            Information Theory and Estimation

            Aditya Grover, …

            I2
            I2
            ICML 2019 6 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2019