Dec 13, 2019
Challenges in machine learning and data science are open online competitions that address problems by providing datasets or simulated environments. They measure the performance of machine learning algorithms with respect to a given problem. The playful nature of challenges naturally attracts students, making challenges a great teaching resource. However, in addition to the use of challenges as educational tools, challenges have a role to play towards a better democratization of AI and machine learning. They function as cost effective problem-solving tools and a means of encouraging the development of re-usable problem templates and open-sourced solutions. However, at present, the geographic, sociological repartition of challenge participants and organizers is very biased. While recent successes in machine learning have raised much hopes, there is a growing concern that the societal and economical benefits might increasingly be in the power and under control of a few. <br><br>CiML (Challenges in Machine Learning) is a forum that brings together workshop organizers, platform providers, and participants to discuss best practices in challenge organization and new methods and application opportunities to design high impact challenges. Following the success of previous years' workshops, we will reconvene and discuss new opportunities for broadening our community. <br><br>For this sixth edition of the CiML workshop at NeurIPS our objective is twofold: (1) We aim to enlarge the community, fostering diversity in the community of participants and organizers; (2) We aim to promote the organization of challenges for the benefit of more diverse communities.<br><br>The workshop provides room for discussion on these topics and aims to bring together potential partners to organize such challenges and stimulate "machine learning for good", i.e. the organization of challenges for the benefit of society. We have invited prominent speakers that have experience in this domain.
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker