Next
Invited Talk: Training Neural Networks With a Little Help from Knowledge
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Contributed Talk: MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-005-alpha.b-cdn.net
      • sl-yoda-v3-stream-005-beta.b-cdn.net
      • 1026534588.rsc.cdn77.org
      • 1776530814.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • English (United States)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Contributed Talk: MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Contributed Talk: MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library

            Dez 13, 2019

            Sprecher:innen

            DK

            Dmitry Kazhdan

            Sprecher:in · 0 Follower:innen

            Über

            Machine learning (ML) has seen a tremendous amount of recent success and has been applied in a variety of applications. However, it comes with several drawbacks, such as the need for large amounts of training data and the lack of explainability and verifiability of the results. In many domains, there is structured knowledge (e.g., from electronic health records, laws, clinical guidelines, or common sense knowledge) which can be leveraged for reasoning in an informed way (i.e., including the info…

            Organisator

            N2
            N2

            NIPS 2019

            Konto · 963 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über NIPS 2019

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            The AutoDL Challenge
            55:00

            The AutoDL Challenge

            Noriaki Ota, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            MicroNet Challenge
            48:22

            MicroNet Challenge

            Cong Leng, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adaptive-CS-Net: fastMRI eith Adaptive Intelligence
            16:12

            Adaptive-CS-Net: fastMRI eith Adaptive Intelligence

            Nicola Pezzotti

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Roundtable Discussion Panel
            59:18

            Roundtable Discussion Panel

            Alan Aspuru-Guzik, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            LISA: Towards Learned DNA Sequence Search
            14:27

            LISA: Towards Learned DNA Sequence Search

            Darryl Ho

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning in Structured MDPs With convex Cost function: Improved rerget bounds for inventory management
            40:24

            Learning in Structured MDPs With convex Cost function: Improved rerget bounds for inventory management

            Shipra Agrawal

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NIPS 2019 folgen